IB2 HL Chemistry

5. Kinetics

Read: Zumdahl² Chapter 12 Sections 1-3 (ignore reference to integrated rate law), 4 (only pp. 570-573, half-life of first order reactions), 5-8 (you do NOT need to be able to calculate A or E_a but must be able to describe how to do it)

Concepts to be mastered:

To master a concept, you must be able to do three things:

- 1. define the concept,
- 2. explain the concept, and
- 3. give an example of the concept.
- rate of reaction, average rate, instantaneous rate, activation energy, collision theory, mechanism, elementary reactions, molecularity
- forward and reverse reactions, forward and reverse activation energies, rate law, rate constant, activated state, transition state, activated complex
- Maxwell-Boltzmann distribution, catalysis, homogeneous catalyst, heterogeneous catalyst, order of a chemical reaction, order of a chemical reaction with respect to a particular chemical species

Skills to be mastered:

To master a skill, you must be able to

- 1. recognize when the skill is needed,
- 2. recognize what information is needed to execute the skill,
- 3. execute the skill, and
- 4. assess whether the skill has been executed correctly.

		Zumdahl ²
•	Relate the relative values of forward and reverse activation energies to a reaction being exothermic and endothermic	49-52,
•	Compare forward and reverse reaction rates based upon forward and reverse activation energies	51-52
•	Determine the rate law and rate constant for a chemical reaction from initial rate data	6, 7, 21-26, 71, 73,
•	Write the rate law for a given elementary reaction	45, 48
•	Determine half-life for first order reactions	
•	Relate rate law to mechanism for one or two step reactions	61
•	Determine rate for a reaction given appropriate data	17, 18. 65
•	Explain the dependence of reaction rates with concentration, temperature and surface area based upon the collision theory	5
•	Explain the application of the equilibrium principle and kinetics in the Haber process for the synthesis of ammonia and contact process for the synthesis of sulfuric acid	

Additional Problems: 9-16, 19, 20, 62, 74.